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Abstract-Finite difference techniques have been used to investigate finite amplitude convection in a porous 
container with fault-like geometry. The principal purpose was to determine the role of wall boundary 
conditions and the initial perturbation on the subsequent flow pattern. In containers with prescribed wall 
temperatures, the flow was weakly 3-dim., but with the general appearance of 2-dim. transverse rolls. In 
containers bounded by impermeable blocks of finite thermal conductivity, a flow pattern similar to that for 
containers with prescribed wall temperatures tended to be set up; but asymmetric initial perturbations 
tended to give rise to slowly evolving flows in which asymmetries were still present after 104 yr. The results were 

compared with data from naturally occurring geothermal systems. 
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SINCE Lapwoods [l] paper on the onset ~fconv~tion 
in an infinite, homogeneous isotropic porous, horiz- 
ontal dab which is heated from below, there has been 
considerable interest in thermal convection in perme- 
able materials. For example, Lapwood’s results have 
been extended to: (a) the finite amplitude regime [2, 
31; (b) the situation of temperature dependent fluid 
properties [4, 51, and (c) the situation of anisotropic 
permeability [6]. Thermal convection in porous media 
is of fundamental importance in geothermal reservoir 
dynamics [7, 81 as well as to thermal process in the 
oceanic crust [!& lo]. 

The emphasis of this paper is on therma convection 
in porous/~~e~b~e zones which are laterally con- 
fined, such as is the case of a fauft or fracture zone 
within the earth’s crust. By providing the main vertical 
permeability, such zones may be &he controlling factor 
in many geothermal systems. For example, Basin and 
Range geothermal systems in the western United 
States appear to be controlled by deep, nearly vertical 
master faults [ 111, the Long Valley, California hy- 
drothermal activity is probably controlled by deep 
caldera ring fractures and much of the surface activity 
is along faults [12], the East Mesa, California anomaly 
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appears to be due to hot fluid rising along a number of 
active faults [13), and it is apparent that marine 
hydrothermal circulation is partially concentrated by 
fault zones [14]. Fault zones may also act as a source 
to feed shallow horizontal aquifers [ 151. 

Thermal convection in a fault zone may be treated 
on the basis of convection in a water-saturated, closed, 
rectangular porous container in which one horizontal 
dimension is much shorter than the vertical and the 
other horizontal dimension. There have been several 
studies of convection in closed containers with a 
square horizontal plan form [16-221. Because of the 
assumptions of insulated vertical walls and square plan 
geometry, however, these results may not be directly 
applicable to the problem treated here. Nevertheless, 
these studies have shown several features of convection 
in closed containers which are of interest to the 
problem to be considered. Beck [16] has done the 
stability analysis for the onset of convection. The later 
papers have examined the problems of whether two or 
three dimensional motion occurs at supercritical Ray- 
leigh number, whether the cell at a given Rayleigh 
number is unique, and whether it is steady. The results 
indicate that for cubic boxes at a high Rayleigh 
number the flow may be either 2- or 3-dim., steady or 
oscillatory depending upon the initial conditions [Zl], 
that box dimensions may determine whether 2-dim. or 
3-dim. motions exist above a certain Rayleigh number 
for non-cubic boxes [19,20], and that for certain box 
dimensions multiple 3-dim. steady states may exist 

E223. 
On the other hand, studies of convection in closed 

containers with fault-like geometry [23-281 and with 
boundary conditions more appropriate to the geologi- 
cal situation are far less complete, particularly as 
regards the convective motions at finite amplitude. 
Calculations on the onset of convection in containers 
with fault-like geometry have been made under the 
assumption of: (1) insulated side walls [ 161, in which 
case the cell pattern was found to take the form of rolls 
with axes perpendicular to the strike of the fault 
(transverse rolls); (2) prescribed wall temperatures [24, 
251 in which the cell pattern was found to be a single 
roll with its axis parallel to the strike of the fault 
(longitudinal roll) and (3) imperfectly conducting side 
walis [27] in which transverse rolls were assumed a 
priori. The only finite amplitude results [28] assumed 
an upward through-flow from the base of the fault and 
assumed the motion to be inde~ndent of the coor- 
dinate along the strike of the fault; a fixed tem~rature 
gradient was maintained along the walls of the fault. 

In this paper we investigate some aspects of finite 
amplitude convection in a rectangular porous con- 
tainer with fault-like geometry. Figure 1 depicts a 
simple model of a porous fault zone imbedded between 
two ~m~rmeable blocks of material having finite 
thermal conductivity, and inclined at an angle t? to the 
vertical. In the cases discussed below, 0 was taken to be 
90” so that the acceleration of gravity, g, acted in the 
negative x direction ; the 4’ direction was parallel to the 

strike of the fault zone; the z axis was perpendicular to 
the strike. By considering the blocks adjacent to the 
fault zone in which conductive heat transfer to and 
from the porous zone was allowed to take place, the 
conditions were more representative of the conditions 
within the earth’s crust; however, we also modeled a 
few cases in which those blocks were ignored and the 
s-y planes bounding the fault had a prescribed 
uniform vertical thermal gradient. In all cases, all of the 
fault boundaries were assumed to be impermeable; 
and the x--z planes which bounded the model were 
assumed to be insulated. The X-J’ planes bounding the 
exterior of the models had a prescribed uniform 
thermal gradient. 

The equations were represented in finite difference 
form; and, subject to various initial conditions, Ray- 
leigh numbers and box aspect ratios, the system was 
allowed to evolve in time. The outputs for many of the 
cases modeled were snapshots of slowly evolving 
solutions. Such outputs were suitable for showing the 
effect of initial conditions on the subsequent convective 
flow over time scales of geophysical interest. The 
results presented below, however, were not sufficient to 
indicate conclusively whether the final state would 
have been steady or oscillatory, or whether there may 
be multiple steady states. 

The results were also discussed in the light of limited 
data from known geothermal systems in which frac- 
tures and faults appear to be dominant controlling 
structures. 

2. BASIC EQUATIONS 

The pertinent equations of conservation of mass, 
momentum and energy for the porous zone were, 
respectively : 

v,v=o, (1) 

the fluid which is assumed to be incompressible; 

v = - (W)(VP - P&I), (2) 

inertial terms being neglected; and the heat transport 
equation, 

(pc),dT/& = A,V=T - &C,V .VT. (3) 

In the impermeable material, heat was transferred by 
conduction only. Thus 

V=T= (p,cJA,)~T/c?t. (4) 

Solutions to equations (l)-(4) were subject to 
boundary conditions. The boundaries of the fault zone 
were assumed to be impermeable, thus the velocity 
conditions were 

v.n”=o (5) 

at the boundaries of the porous zone, where II is a unit 
vector normal to the walls. The top and bottom planes 
were assumed to be isothermal, thus 

T= T, at x =O, T= T, at x = L, (6) 
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FIG 1. Basic physical system with its dimensions and 
temperature boundary conditions. 

where T, > T, ; whereas the vertical boundaries to the 
extremities of the fault perpendicular to its strike were 
assumed to be insulated, thus 

aTjay = 0 at 
y=o 

y=L’ 
(7) 

Y 

and the other vertical boundaries were held at a 
uniform vertical temperature gradient 

T= T, - (7-i - T,)(xIL) 

at Z =0 and M + L, + L. (8) 

In some cases the impermeable rock adjacent to the 
fault was ignored and (8) was applied to the approp- 
riate boundaries of the porous zone. Finally, the fluid 
density was governed by an equation of state 

pf = POD - P(T- ToI1 (9) 

which was substituted into the buoyancy term in (2) 
(i.e. the Boussinesq approximation). 

2.1. Non-dimensionalization and the vector potential 
Holst and Aziz [17] and Horne [21] have shown 

that the solution to the above equations by finite 
differences is facilitated by introducing a vector poten- 
tial rather than by formulating the equations in terms 
of pressure. We follow their lead by: 

(a) introducing a vector potential + = ($i, ti2, $j), 
defined by 

v=vx*, V.$=O; (10) 

(b) taking the curl of equation (2) to eliminate the 
pressure 

(c) non-dimensionalizing the resulting equations, as 

well as the heat transport equations (3) and (4) by 
introducing 

L2(pc) t’ 
T=T,+AT,T’, t=Z. 

An ’ 

x = X’L,, y = L,y’, z = L,z’; 

u = Qu’, 
LY 

v = L Qu', 
LZ 

x ,=LQW’; x 

In the porous zone the final, dimensionless equations 
were 

O2 T’ - .4[d(aT’/ax’) 

+ d(aT’/ay’) + wyarjaz*)] = ayjat’, (ii) 

02q2 = - ARaT’Iaz’, (12) 

92 *; = AB2 RaT’layl, (13) 

ti = all/;/ay - a$;/azl, (14) 

VI = - a*;jad, (15) 

WI = a$;jai (16) 

where R = pig/k, AT, L,K/I,q is the Rayleigh num- 
ber. In the final form of the equations J/; = 0 because 
of the assumption that 0 = 90” [17]. In the conducting 
regions bounding the porous zone, the heat con- 
duction became 

o2 T’ = D6T’Jdt’ (17) 

where 

D = P~~JP,c,~. (18) 

2.2. Method of solution 
Equations (ll)-(17) together with the appropriate 

dimensionless boundary conditions were solved 
numerically by the method of finite differences. Within 
the porous zone, the equations were solved on an 
11 x 11 x 11 grid. The impermeable blocks on each side 
of the porous zone were of the same dimensions as the 
porous region and were also represented by 
11 x 11 x 11 grids. The energy equation (11) was solved 
using an explicit, forward time stepping procedure. In 
this procedure, care must be taken to restrict the size of 
the time step so that the solution remains numerically 
stable. Moreover, the advective terms must be treated 
in a special manner in order to conserve energy within 
the system. We selected the time step and an energy 
conserving form of the equations given by Torrance 
[29]. The Poisson’s equations (12) and (13) were solved 
by the method of successive over-relaxation [30]. To 
increase the rate of convergence and to minimize the 
accumulation of errors in the corners, successive scans 
were begun from different corners of the grid as 
suggested by Elder [31]. Finally, it was required that 
temperature and heat flow be continuous across the 
permeable/impermeable boundary. The finite differ- 
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ence expressions of these continuity conditions were 
derived from Carnahan et al. [32]. A typical run on a 
CDC CYBER 74 for a model with A = B = 0.1 took 
about 1800s CPU time for about 250 time steps. 
Models with a smaller aspect took ratio considerably 
longer. Further details of the numerical procedure are 
given in Hernandez [33]. 

3. RESULTS 

The procedure was to first select a wall boundary 
condition and an aspect ratio, A and B being taken to 
be equal. Then, for a fixed Rayleigh number, a variety 
of initial conditions was chosen. The temperature 
distribution and the velocity components were printed 
at specified time intervals throughout the course of the 
numerical procedure so that the temporal evolution of 
the cell pattern could be monitored for the different 
initial velocity perturbations. We have represented the 
cell pattern by displaying computer-drawn velocity 
vectors at each grid point on three exterior surfaces of 
the porous zone, and we have represented the tempera- 
ture structure by a computer generated 3-dim. sche- 
matic of the surface heat flow. The heat flow sche- 
matics were shown because the flow patterns on the 
x-y planes bounding the porous zone were found to be 
dissimilar for many of the models. This asymmetry 
across the aperture of the fracture may be observed as 
an asymmetry in the heat flow anomaly. In the interest 
of compactness, only the output for the final iteration 
time is presented in this paper. Results for some 
intermediate times and for velocity patterns on other 
representative planes are given in Hernandez [33], as 
are some other model results. Due to limitations on 
computer time, several of the models were not allowed 
to run to a steady state. The calculations were 
continued until a real time, given reasonable geophysi- 
cal parameters, of approx. 1O“yr. Since the magnitude 
of the time step was subject to change between 
successive iterations, so that numerical stability could 
be assured, the runs were not all of identical length. 
Another criterion for ceasing the calculation was that 
the flow pattern appeared to vary slowly and regularly 
from one iteration to the next. 

A time of lo4 yr was chosen as being a time frame on 
which the system might be through to be reasonably 
unaltered by geological and geochemical processes 
(e.g. opening of new permeability by tectonic displace- 
ment, clogging by precipitates from the hydrothermal 
solution). This time scale is just a guess, but it is 
certainly clear that fracture convection systems in the 
earth’s crust are not likely to exist indefinitely. For all 
the models, Rayleigh numbers were chosen to be 5 or 
10 times the critical number R,, where R, was taken 
from the work of Shyu [26] for a fracture of a given 
aspect ratio and prescribed wall temperatures along 
the x-y boundary planes. 

The convection was initiated by placing a small 
upward velocity perturbation at different locations, 
referred to below as (I), (II) or (III), along the base of 
the porous zone. Condition (I) refers to a perturbation 
at (0, 0, 0); condition (II) refers to a perturbation 
placed at (0,2,0) and (0,9,0); condition (III) refers to a 
perturbation placed at (O,O, 5) and (0, 10,5), where the 
coordinates refer to grid points defined within the 
porous zone. The magnitude of the perturbation was 
about two orders of magnitude smaller than the 
maximum of the x component of the velocity at the end 
of the calculations. The significance of the form of the 
initial conditions was that (I) and (II) were asymmetric 
with respect to the fracture aperture whereas (III) was 
symmetric. Condition (II) would tend to produce 
longitudinal rolls whereas (III) would tend to produce 
transverse rolls. There is no clear, precise physical 
significance to the form of the initial conditions 
chosen, although (II) might be envisioned as resulting 
from displacement of the fault walls during tectonic 
activity (e.g. normal faulting), and (III) might be 
envisioned as a response to tidal forces. 

In order to make the conversion to dimensional 
time,& = 103mforA = B = O.l;L, = 10’mforA = 
B = 0.01; (pc/l), = 10e6 m’/s. 

3.1. Prescribed wall temperatures 
Figures 2 and 3 show the cell pattern and surface 

heat flux for situations in which R = 5R,, A = B = 0.1, 
and the perturbation was (I) and (II), respectively. The 
velocity field indicates a 3-dim. flow pattern ; however, 
the velocity across the fracture aperture is considerably 
smaller than the other two components. Thus, the flow 
consists mainly of 2-dim transverse rolls in which the 
fluid rises along the two insulated wallsand sinks at the 
center. There are some small secondary cells, and the 
velocity vectors along the planes shown suggest that 
there may in fact be two pair of rolls, one in the upper 
part of the fault and one in the lower. A print-out of the 
flow pattern on other planes shows that this is not the 
case, however [33]. The heat flow anomaly further 
indicates that the flow pattern is symmetric across the 
width of the fault, despite the fact that the initial 
perturbations were asymmetric in both cases. The 
calculations were run for a real time of 12,OOOyr. The 
pattern in both cases was essentially unchanged for 
several thousand years preceding the tIna1 output. The 
results suggest that at R = 5R,, the flow pattern in 
faults with prescribed wall temperatures should take 
the form of transverse rolls regardless of the initial 
condition. Calculations done at R = lOR, with 
symmetric initial perturbations gave essentially the 
same result [33]. 

3.2. Imperfectly conducting walls 
For these cases, blocks of impermeable rock with a 

finite thermal conductivity and with the same dimen- 
sions as the porous zone were placed in a manner as 
indicated in Fig. 1. Figures 4-7 show the convection 
pattern and heat flow for cases with aspect ratios A = 
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FIG. 2. Flow pattern and surface heat flow anomaiy for fault 
zone assuming faces z = 0 and z = 1 have a prescribed 
temperature gradient. R=5R,, A=B=O.l, t=12,OOOyr. 

Initial perturbation : asymmetric, type (I). 

B = 0.1, but for different Rayleigh numbers and initial 
perturbations. 

Figure 4 shows the situation after a computation 
time corresponding to 75OOyr, assuming a Rayleigh 
number R = 5R, and a type (I) perturbation. It is clear 
that the flow is much more irregular than in the cases 
with prescribed wall temperatures. There is a pro- 
nounced tendency toward the development of a trans- 
verse roll at the end of the zone far from the initial 
perturbation; however, the circulation near the end 
where the perturbation was initiated shows evidence of 
two cells, one of which has a longitudinal character 
(see plane y = 0, Fig. 4). The asymmetry of the 
convection pattern is quite evident in the heat flow 
schematic. Moreover, there is a substantial heat flow 
anomaly across the upper surface of the impermeable 
zone. This indicates that heat is transferred laterally 

FIG. 3. Same model as Fig. 2 except initial perturbation was 
asymmetric, type (II). 

through the fault boundaries and the excess heat is 
conducted through the upper surface. The asymmetry 
further suggests that the conductive heat transfer 
across the impermeable/permeable boundaries paral- 
lel to the strike of the fault is strongly influenced by the 
initial perturbation. 

Figures 5 and 6 show the situation assuming R 
= 5R, and R = lOR,, respectively. An initial per- 
turbation of type (III) was used. Such a perturbation 
would be expected to induce transverse rolls; and, 
ignoring the small secondary cells and the small 
horizontal component of velocity across the width of 
the fault, transverse rolls are mainly what is observed. 
Although the outputs shown are for 12,000 and 7OOOyr, 
respectively, samples at earlier times show that the 
circulation was developed by 3OOtlyr and has been 
steady since. 
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FIG. 4. Flow pattern and surface heat flow anomaly for a fault 
zone assuming faces z = 0 and z = 1 are in contact with 
impermeable material of finite thermal conductivity. R = 
5R,, A = B = 0.1, t = 7500yr. Initial perturbation: 

asymmetric, type (I). 

Figure 7 shows the situation after 13,NOyr assuming 
R = lOR, and an initial perturbation of type (II). Such 
a perturbation would tend to induce a longitudinal 
roll; however, the plan form indicated by the planes x 
= 1,z =E t in the figure suggests a pair of transverse 
roll; however, the plan form indicated by the planes 
x = 1, z =i 1 in the figure suggests a pair of transverse 
in the plane y = 0 are somewhat suggestive of a 
longitudinal roll, and the plane z = 0 (not shown, see 
Hernandez [33]) consists mainly of an ascending 
sheet. The heat flow schematic also indicates the high 
degree of asymmetry. A heat flow profile along the 
strike of the fault zone would indicate a pattern 
corresponding to transverse rolls; whereas a profile 

FIG. 5. As in Fig. 4 except t = 12,000 yr and initial 
perturbation was symmetric, type (III). 

perpendicular to the strike, particularly near the ends 
of the fault would show a marked cross-strike heat flow 
gradient. Quite evidently, as a consequence of heat 
transfer into the impermeable material, the initial 
~rturbation has executed a significant control on the 
subsequent development of the convection pattern. 

Figures 8 and 9 show two examples of the con- 
vection pattern and surface heat flow for models in 
which the aspect ratio was A = B = 0.01. Figure 8 is 
for R = lOR, and an initial perturbation of type (III). 
As in the previous cases in which such a perturbation 
was used Figs. 5, 6), the fluid convects basically as a 
pair of transverse rolls. Figure 9 is for R = 5R, and an 
initial perturbation of type (II). In this case, the flow 
pattern is more strongly indicative of transverse rolls 
than in the corresponding model with the higher 
aspect ratio (Fig. 7). The heat flow schematic, however, 
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FIG. 6. As in Fig. 5 except R = lOR,, t = 7000yr. 

shows an asymmetry perpendicular to the strike of the 
fracture which is in some ways similar to that shown in 
Fig. 7. Once again, because of the finite thermal 
conductivity of the impermeable material adjacent to 
the fault, the asymmetric initial condition tends to 
affect the subsequent evolution of the flow. 

4. DISCUSSION AND CONCLUSIONS 

4.1. The cell pattern 

amplitude that 3-dim. convection might be more likely. 
They also raised the question as to whether in a fault 
zone bounded by impermeable walls of finite thermal 
conductivity the flow might evolve in time to a flow 
which might be typical of an insulated wall boundary 
condition. In addition, the work done on finite ampli- 
tude convection in cubic containers with insulated 
walls has indicated that the flow may be either 2- or 3- 
dim. and dependent upon the initial conditions 
[19-221. 

The main purpose of this study was to investigate, to Our results can be summarized as follows: 
a limited degree, the effects of initial and boundary (1) In models with prescribed wall temperatures, the 
conditions on finite amplitude convection in a porous flow was steady, symmetric, and weakly 3-dim. regard- 
container with fault-like geometry. Earlier work of less of whether the initial perturbation was symmetric 
Lowell and Shyu [25] has shown that at the onset of or asymmetric. Thus, the suggestion of [25] that the 
convection in a fault zone with prescribed wall tem- finite amplitude flow might be 3-dim., even though 
peratures the cell pattern should be of the form of a longitudinal rolls occur at R = R,, was affirmed. Since 
longitudinal roll; but they suggested that at finite the transverse velocity component was small, however, 

FIG. 7. As in Fig. 4 except R = lOR,, t = 13,500 yr, and initial 
perturbation was asymmetric, type (II). 
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FIG. 8. As in Fig. 6 except t = 6000yr, A = B = 0.01. 

the surface heat flow anomaly gave the appearance of 
2-dim. transverse rolls. The results did nof appear to 
depend upon the Rayleigh number in the range 
SR, I R < lOR,. 

(2) In models bounded by impermeable slabs of 
finite thermal conductivity, the flow pattern was 
dependent upon the form of the initial perturbation. 
Models in which the initial perturbation was sym- 
metric [type (III)] set up steady, symmetric cell 
patterns which, though weakly S-dim., basically took 
the form of transverse rolls. Such a pattern developed 
for R = 5R, or lOR, and aspect ratios of 0.1 or 0.01. 
Based on the heat flow anomaly calculation, there was 
very little heat transfer out ofthe porous zone. The heat 
flow anomaly varied along the strike of the fault, 
corresponding to the regions of rising and sinking flow 
in the expected manner. 

On the other hand, when the initial ~rturbation 
was asymmetric [(I) or (II)], the resulting convective 

FIG. 9. As in Fig. 7 except R = 5R,, A = 5 = 0.01. 

flow tended to retain the asymmetry for a time of at 
least several thousand years. Because of the expense 
involved in making these calculations, especially for 
the models with aspect ratio of 0.01, the calculations 
were not run to an equilibrium state, if in fact there was 
one. We had expected that the efftxt of heat transfer 
across the walls of the fault would be to render those 
walls insulators as the convection pattern evolved. The 
resulting pattern would then have been similar to that 
arising from a symmetric initial ~rturbation. There is 
some evidence that this was indeed what was develop- 
ing. Figures 7 and 9 show considerable similarity to the 
transverse rolls in Figs. 6 and 8, particularly in the 
plane z = 1. The long-strike heat flow anomaly in Figs. 
7 and 9 is also consistent with much of the flow within 
the fault zone being characterized by transverse rolls. 

Based on these limited results, it appears that finite 
amplitude convection in a fault zone, whether with 
prescribed wall temperatures or with finite heat trans- 



Finite amplitude couvection 639 

FIG. 10. 
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fer, tends to be a weakly 3-dim. flow in which the 
dominant mode is transverse rolls. These results hold 
for Rayleigh numbers up to 10 times critical. 

More work is needed to determine whether steady 
transverse rolls really do develop at long times in 
systems with finite heat transfer across the walls of the 
fault, whether the patterns that have evolved are stable, 
whether there may be other steady states etc. In- 
tuitively, it would seem that the cubic plan form, 
insulated boundary models which have been studied to 
date may admit a broader range of solutions than 
would be possible in the models with fault-like geo- 
metry and with finite or infinite heat transfer boundary 
conditions which we have studied. 

It is interesting to note that for times of the order of 
104yr, the effect of asymmetric initial perturbations 
may still be observed by the fact that the heat flow 
anomaly exists well outside the porous zone and that 
the anomaly is asymmetric across the strike of the 
fault. This result may be of considerable geophysical 
importance. 

4.2. Application to known geothermal systems 

Available data on fault-controlled geothermal sys- 
tems is very sketchy and such systems tend to be 
geologically complex ; so it is difficult to compare the 
results of our simple model with field data in a 
quantitative fashion. Two continental thermal areas 
which appear to be fault controlled are the East Mesa 
Anomaly in the Imperial Valley, California and the 
Izmir-Seferihisar Area in Western Turkey. Figures 10 
and 11 show that for each of these areas an alternating 
pattern of thermal highs and lows follows the linear 
trend of the fault zones. The spatial scales are of the 
order of a few kilometers for each area. The thermal 
pattern may be due to ascending and descending fluid 
associated with transverse convective rolls within the 
fault zone - perhaps as are indicated by Figs. $6, or 8 
of the model results. The absence of any apparent 
asymmetry across the strike of the fault zones is 
certainly not conclusive evidence as to the nature of the 
initial perturbation, since geological as well as physical 
processes may determine the form of the flow pattern 
in natural systems. For example, it may well be 
reasoned that the permeability in fault zones may be 
anisotropic and that the transverse horizontal per- 
meability is lower than the other components [23]. 
Such an anisotropy would tend to force transverse rolls 
rather than longitudinal rolls. 

Green [14] has examined a rather detailed suite of 
heat flow data from the Galapagos Spreading Center. 
His results suggest a widespread porous medium type 
hydrothermal circulation with substantial local con- 
trol of the circulation by escarpments. In fact, a 
traverse across a section of an escarpment shows a 
substantial transverse heat flow anomaly gradient with 
high heat flow on the upthrown side. Green suggests 
that the circulation is not completely forced by the 
topography (the chimney effect). Is it possible that 
convection with the fault zone itself, perhaps partly 

evolving from an asymmetric, fault motion induced 
initial perturbation, is partially responsible? Clearly, 
theoretical models of fault zone convection need to be 
improved and additional detailed measurements on 
fault-controlled geothermal systems are necessary. 
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CONVECTION D’AMPLITUDE FINIE DANS UN VOLUME POREUX AVEC UNE 
GEOMETRIE DE FAILLE: EFFET DES CONDITIONS INTIALES ET AUX LIMITES 

Resumi-On utili~lest~hniquesdediff~rences finiespour~tudieria~onvection ~amp~tudefinieda~suu 

volume poreux avec une gkom&rie de faille. Le but principal est la determination du rdle des conditions 
limites aux parois et de la ~rturb~t~o~ initiale sur la configuration d’&oulement. Dans des volumes avec des 
tempiratures donnhs B la paroi, l’dcoulement est faiblement tridimensionnei~ avec i’apparence g&&ale de 
rouleaux transverses bidimensionnels. Dans des volumes limit& par des blocs impermiables B conductivitt 
thermique finie, il s’&ablit une configuration d%coulement proche de celle relative aux volumes avec 
temperatures de paroi fix&es; mais des perturbations initiales dissym.+triques tendent B faire apparaitre des 
&coulements dans lesquels des dissymdtries sont encore prcisentes apr& lo* ans. tes rCsultats sent compards 

avec des don&s relatives ii des systemes g~o~ermiques existants dans la nature. 

KONVEKTION MIT ENDLICHER AMPLITUDE IN EINEM PORC)SEN BEHbiLTER MIT 
VERWERFUNGSARTIGER GEOMETRIE: EINFLUSS DER ANFANGS- UND 

RANDBEDINCUNGEN 

Zu~mmenfa~ng-D~~erenzenver~hren wurden angewandt, urn die Konvektion mit endlicher Amplifude 
in einem pordsen Behglter mit verwerf~ngs~tiger Geometrie zu untersuche~. Das Hauptziel bestand darin, 
die Rolle der Randbedingungen an der Wand und die der anfgnglichen U~~le~c~f~rmigkeit auf die spatere 
StrGmungsverteilung zu ermitteln. In BehLltern mit vorgegebenen Wandtemperaturen war die StrGmung 
schwach dreidimensional, es traten aber st&ndig zweidimensionale Querwalzen auf. In Behgltern, die von 
undurchltisigen Bliicken endlicher W&meleitf&igkeit begrenzt waren, zeigte die Strtimungsverteilung die 
Tendenz zu einem ghnlichen Verhalten wie bei den Behaltern mit vorgegebenen Wandtemperaturen, jedoch 
fiihrten asymmetrische anfkgliche Ungleic~f~rmigkei~en zu langsam sich entwickelnden StrBmungen, in 
denen Asymme~rien noch nach lo4 Jahren vorhanden waren. Die Ergebnisse wurden mit den Daten 

natiirtich auftretender geothermischer System vergiicben. 

KOHBEKL&W KOHEWOR AMIllIMTYAbI B FIOPkfCTOM Oi-PAHMYEHHOM 
OEi’bEME HECOBEP~~~HO~ i-EOMETPMM. BJIMIIHME HA9AJibHbIX 

M rPAH~YHbIX YC~OB~~ 

AnitoTauw-KoH8eKwa KoHewoir aMrmwTynb1 B nop~no~ orpaHuYeHRoM o6MMe Hecoeepmewoti 

reoMeTprra Hccnenonanach MeToRoM KoHewbtx pawocTe8. OcHoeHax uenh kiccnenonamix cocToana 

B OnpeLleJIeHliki LiJPiaHRII rpaHWHblX yCJlOBHti Ha CTeMKe I4 Ha'iaJlbHOrO BO3MymeHHX Ha XapTHHy 

reeYeHtlK. npu 3aRaHHblx 3uaqesiwx TeMnepaTypbl cTeHoK uaku5naeTcr noqTw TpexMepwbrrii noToK c 

AByMepHblMH 1IOuepeYHbIMH BaJiaM11, B03HHKafOLi&UMW u0 BCeMy 06W2My. B OfibeMaX, OrPaHMYeHHblX 

Hen~o~uuae~biM~ cTeHKaw4 Konereoii Ten~on~~~ocTu, Hai%iienaerc* aHaifortfwiaR KapTnHa 

TeSeHRII,HOaCZtMMeTpltYff~e HaYaRbHbie 3O?~y~eH~~ Bb$3blBaKIT MeiUleHHO pa3a~3a~m~~~ TeWREe. 

acnwferpwa Ko~5poroei4e ua6AIORaeTCS Qiepe3 I@ Ned. fipO~%%O CpaBHesue nony?eHHbIx pexynb- 


