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Abstract—Finite difference techniques have been used to investigate finite amplitude convection in a porous
container with fault-like geometry. The principal purpose was to determine the role of wall boundary
conditions and the initial perturbation on the subsequent flow pattern. In containers with prescribed wall
temperatures, the flow was weakly 3-dim., but with the general appearance of 2-dim. transverse rolls. In
containers bounded by impermeable blocks of finite thermal conductivity, a flow pattern similar to that for
containers with prescribed wall temperatures tended to be set up; but asymmetric initial perturbations
tended to give rise to slowly evolving flows in which asymmetries were still present after 10* yr. The results were
compared with data from naturally occurring geothermal systems.
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NOMENCLATURE

thermal diffusivity;

= L_/L, aspect ratio;

= L,/L,, aspect ratio;

specific heat;

gravitational acceleration ;

permeability ;

dimension of porous zone in direction of
subscript ;
horizontal
material ;
pressure;
Rayleigh number;

critical Rayleigh number;

time;

temperature;

temperature at cold and hot boundaries,
respectively ;'

temperature difference between hot and
cold boundaries;

X, y, z components, respectively of Darcian
fluid velocity;

Darcian velocity vector;

Cartesian coordinates;

Del operator;

= A23%/ax* + B 3oy + 3o,
modified Laplacian operator present in the
dimensionless equations.

dimension of impermeable

Greek symbols

B,
1,
05
}‘,
ps
¥,

thermal expansion coefficient;
viscosity ;

angle of inclination (Fig. 1);
thermal conductivity;
density;

vector potential (i, ¥, ¥}
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Subscripts
f, fluid;
m, solid—fluid mixture:
5, solid ;
0, cold surface.

Superscript
dimensionless quantity.

1. INTRODUCTION

Since Lapwood's { 1] paper on the onset of convection
in an infinite, homogeneous, isotropic porous, horiz-
ontal slab which is heated from below, there has been
considerable interest in thermal convection in perme-
able materials. For example, Lapwood’s results have
been extended to: (a) the finite amplitude regime [2,
3]; (b) the situation of temperature dependent fluid
properties [4, 5], and (c) the situation of anisotropic
permeability [6]. Thermal convection in porous media
is of fundamental importance in geothermal reservoir
dynamics [7, 8] as well as to thermal process in the
oceanic crust [9, 10].

The emphasis of this paper is on thermal convection
in porous/permeable zones which are laterally con-
fined, such as is the case of a fault or {racture zone
within the earth’s crust. By providing the main vertical
permeability, such zones may be the controlling factor
in many geothermal systems. For example, Basin and
Range geothermal systems in the western United
States appear to be controlled by deep, nearly vertical
master faults [11], the Long Valley, California hy-
drothermal activity is probably controlled by deep
caldera ring fractures and much of the surface activity
is along faults {12}, the East Mesa, California anomaly
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appears to be due to hot fluid rising along a number of
active faults [13], and it is apparent that marine
hydrothermal circulation is partially concentrated by
fault zones [14]. Fault zones may also act as a source
to feed shallow horizontal aquifers [15].

Thermal convection in a fault zone may be treated
on the basis of convection in a water-saturated, closed,
rectangular porous container in which one horizontal
dimension is much shorter than the vertical and the
other horizontal dimension. There have been several
studies of convection in closed containers with a
square horizontal plan form [16-22]. Because of the
assumptions of insulated vertical walls and square plan
geometry, however, these results may not be directly
applicable to the problem treated here. Nevertheless,
these studies have shown several features of convection
in closed containers which are of interest to the
problem to be considered. Beck [16] has done the
stability analysis for the onset of convection. The later
papers have examined the problems of whether two or
three dimensional motion occurs at supercritical Ray-
leigh number, whether the cell at a given Rayleigh
number is unique, and whether it is steady. The results
indicate that for cubic boxes at a high Rayleigh
number the flow may be either 2- or 3-dim,, steady or
oscillatory depending upon the initial conditions [21],
that box dimensions may determine whether 2-dim. or
3-dim. motions exist above a certain Rayleigh number
for non-cubic boxes [19, 20], and that for certain box
dimensions multiple 3-dim. steady states may exist
[22].

On the other hand, studies of convection in closed
containers with fault-like geometry [23-287 and with
boundary conditions more appropriate to the geologi-
cal situation are far less complete, particularly as
regards the convective motions at finite amplitude.
Calculations on the onset of convection in containers
with fault-like geometry have been made under the
assumption of : (1) insulated side walls [ 16}, in which
case the cell pattern was found to take the form of rolls
with axes perpendicular to the strike of the fault
{transverse rolls); (2) prescribed wall temperatures [24,
25] in which the cell pattern was found to be a single
roll with its axis parallel to the strike of the fault
(longitudinal roll) and (3) imperfectly conducting side
walls [27] in which transverse rolls were assumed a
priori. The only finite amplitude results [28] assumed
an upward through-flow from the base of the fault and
assumed the motion to be independent of the coor-
dinate along the strike of the fault; a fixed temperature
gradient was maintained along the walls of the fault.

In this paper we investigate some aspects of finite
amplitude convection in a rectangular porous con-
tainer with fault-like geometry. Figure 1 depicts a
simple model of a porous fault zone imbedded between
two impermeable blocks of material having finite
thermal conductivity, and inclined at an angle 8 to the
vertical. In the cases discussed below, f was taken to be
90° so that the acceleration of gravity, g, acted in the
negative x direction ; the y direction was parallel to the
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strike of the fault zone ; the z axis was perpendicular to
the strike. By considering the blocks adjacent to the
fault zone in which conductive heat transfer to and
from the porous zone was allowed to take place, the
conditions were more representative of the conditions
within the earth’s crust; however, we also modeled a
few cases in which those blocks were ignored and the
x-y planes bounding the fault had a prescribed
uniform vertical thermal gradient. In all cases, all of the
fault boundaries were assumed to be impermeable;
and the x—z planes which bounded the model were
assumed to be insulated. The x~y planes bounding the
exterior of the models had a prescribed uniform
thermal gradient.

The equations were represented in finite difference
form; and, subject to various initial conditions, Ray-
leigh numbers and box aspect ratios, the system was
allowed to evolve in time. The outputs for many of the
cases modeled were snapshots of slowly evolving
solutions. Such outputs were suitable for showing the
effect of initial conditions on the subsequent convective
flow over time scales of geophysical interest. The
results presented below, however, were not sufficient to
indicate conclusively whether the final state would
have been steady or oscillatory, or whether there may
be multiple steady states.

The results were also discussed in the light of limited
data from known geothermal systems in which frac-
tures and faults appear to be dominant controlling
structures.

2. BASIC EQUATIONS

The pertinent equations of conservation of mass,
momentum and energy for the porous zone were,
respectively

Vv=0, {1)
the fluid which is assumed to be incompressible;
v= - (K/M}{VP — pg), (2)

inertial terms being neglected ; and the heat transport
equation,
(0C)n0T/0t = A,V2T — pecev - VT. {3)
In the impermeable material, heat was transferred by
conduction only. Thus
VT = (p.c/i)dT ot 4)

Solutions to equations (1)-(4) were subject to
boundary conditions. The boundaries of the fault zone
were assumed to be impermeable, thus the velocity
conditions were

&)

at the boundaries of the porous zone, where # is a unit
vector normal to the walls. The top and bottom planes
were assumed to be isothermal, thus

T=T, T=T,

v-i=90

atx =L, (6)

at x =0,
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surface

FiG. 1. Basic physical system with its dimensions and
temperature boundary conditions.

where T, > T ; whereas the vertical boundaries to the
extremities of the fault perpendicular to its strike were
assumed to be insulated, thus

y=0

oT/oy =0 at

L’ ™

hd
and the other vertical boundaries were held at a
uniform vertical temperature gradient

T=T, = (T, — To)x/L,)
atZ=0 and M+ L,+L. (8)

In some cases the impermeable rock adjacent to the
fault was ignored and (8) was applied to the approp-
riate boundaries of the porous zone. Finally, the fluid
density was governed by an equation of state

pe=poll — B(T— T,)] 9)

which was substituted into the buoyancy term in (2)
(i.e. the Boussinesq approximation).

2.1. Non-dimensionalization and the vector potential

Holst and Aziz [17] and Horne [21] have shown
that the solution to the above equations by finite
differences is facilitated by introducing a vector poten-
tial rather than by formulating the equations in terms
of pressure. We follow their lead by:

(a) introducing a vector potential Y = (y, Y5, ¥3),
defined by

v=Vxy, V-y=0; (10)

(b) taking the curl of equation (2) to eliminate the
pressurc
(c) non-dimensionalizing the resulting equations, as
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well as the heat transport equations (3) and (4), by
introducing

| Lipe)ut’
_ o7, AT, =R
L cipo Am
x=x'L, y=Lyy, z=L,Z;
L, L.
u=Qu, v=L—’Qv', w=—0w;

‘//1=

B0p, by =LV ¥a = L0V

In the porous zone the final, dimensionless equations
were

V2T — A[4(0T"/3x)

+ 0(@T//oy) + w(@T'jo)] = T'/or, (11)
V2, = — ARAT'jéz, (12)
V2y, = AB*RT'/dy, (13)

u = 0yL/dy — 0Y/07, (14)
Vo= — ayy/ox, (15)
W = O,/0x’ (16)

where R = p3gBc;AT,L K /i1 is the Rayleigh num-
ber. In the final form of the equations ¥} = 0 because
of the assumption that 8 = 90° [17]. In the conducting
regions bounding the porous zone, the heat con-
duction became

VT = DT/t an

where

D = pycAn/PmCimAs (18)

2.2. Method of solution

Equations (11)-(17) together with the appropriate
dimensionless boundary conditions were solved
numerically by the method of finite differences. Within
the porous zone, the equations were solved on an
11 x 11 x 11 grid. The impermeable blocks on each side
of the porous zone were of the same dimensions as the
porous region and were also represented by
11 x 11 x 11 grids. The energy equation (11) was solved
using an explicit, forward time stepping procedure. In
this procedure, care must be taken to restrict the size of
the time step so that the solution remains numerically
stable. Moreover, the advective terms must be treated
in a special manner in order to conserve energy within
the system. We selected the time step and an energy
conserving form of the equations given by Torrance
[29]. The Poisson’s equations (12)and (13) were solved
by the method of successive over-relaxation [30]. To
increase the rate of convergence and to minimize the
accumulation of errors in the corners, successive scans
were begun from different corners of the grid as
suggested by Elder [31]. Finally, it was required that
temperature and heat flow be continuous across the
permeable/impermeable boundary. The finite differ-
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ence expressions of these continuity conditions were
derived from Carnahan et al. [32]. A typical run on a
CDC CYBER 74 for a model with A = B = 0.1 took
about 1800s CPU time for about 250 time steps.
Models with a smaller aspect took ratio considerably
longer. Further details of the numerical procedure are
given in Hernandez [33].

3. RESULTS

The procedure was to first select a wall boundary
condition and an aspect ratio, 4 and B being taken to
be equal. Then, for a fixed Rayleigh number, a variety
of initial conditions was chosen. The temperature
distribution and the velocity components were printed
at specified time intervals throughout the course of the
numerical procedure so that the temporal evolution of
the cell pattern could be monitored for the different
initial velocity perturbations. We have represented the
cell pattern by displaying computer-drawn velocity
vectors at each grid point on three exterior surfaces of
the porous zone, and we have represented the tempera-
ture structure by a computer generated 3-dim. sche-
matic of the surface heat flow. The heat flow sche-
matics were shown because the flow patterns on the
x—y planes bounding the porous zone were found to be
dissimilar for many of the models. This asymmetry
across the aperture of the fracture may be observed as
an asymmetry in the heat flow anomaly. In the interest
of compactness, only the output for the final iteration
time is presented in this paper. Results for some
intermediate times and for velocity patterns on other
representative planes are given in Hernandez [33], as
are some other model results. Due to limitations on
computer time, several of the models were not allowed
to run to a steady state. The calculations were
continued until a real time, given reasonable geophysi-
cal parameters, of approx. 10*yr. Since the magnitude
of the time step was subject to change between
successive iterations, so that numerical stability could
be assured, the runs were not all of identical length.
Another criterion for ceasing the calculation was that
the flow pattern appeared to vary slowly and regularly
from one iteration to the next.

A time of 10* yr was chosen as being a time frame on
which the system might be through to be reasonably
unaltered by geological and geochemical processes
(e.g. opening of new permeability by tectonic displace-
ment, clogging by precipitates from the hydrothermal
solution). This time scale is just a guess, but it is
certainly clear that fracture convection systems in the
earth’s crust are not likely to exist indefinitely. For all
the models, Rayleigh numbers were chosen to be 5 or
10 times the critical number R_, where R, was taken
from the work of Shyu [26] for a fracture of a given
aspect ratio and prescribed wall temperatures along
the x—y boundary planes.
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The convection was initiated by placing a small
upward velocity perturbation at different locations,
referred to below as (1), (I) or (I1I), along the base of
the porous zone. Condition (I) refers to a perturbation
at (0, 0, 0); condition (II) refers to a perturbation
placed at (0, 2,0)and (0, 9,0); condition (III) refers to a
perturbation placed at (0, 0, 5) and (0, 10, 5), where the
coordinates refer to grid points defined within the
porous zone. The magnitude of the perturbation was
about two orders of magnitude smaller than the
maximum of the x component of the velocity at the end
of the calculations. The significance of the form of the
initial conditions was that (I) and (II) were asymmetric
with respect to the fracture aperture whereas (II1) was
symmetric. Condition (II) would tend to produce
longitudinal rolls whereas (I11) would tend to produce
transverse rolls. There is no clear, precise physical
significance to the form of the initial conditions
chosen, although (IT) might be envisioned as resulting
from displacement of the fault walls during tectonic
activity (e.g. normal faulting), and (III) might be
envisioned as a response to tidal forces.

In order to make the conversion to dimensional
time,L, = 103mfor4 = B=0.1;L, = 10’ mfor A =
B =001; (pc/d),, = 10~ m?/s.

3.1. Prescribed wall temperatures

Figures 2 and 3 show the cell pattern and surface
heat flux for situationsin which R = 5R_,4A = B = 0.1,
and the perturbation was (I) and (II), respectively. The
velocity field indicates a 3-dim. flow pattern ; however,
the velocity across the fracture aperture is considerably
smaller than the other two components. Thus, the flow
consists mainly of 2-dim transverse rolls in which the
fluid rises along the two insulated walls and sinks at the
center. There are some small secondary cells, and the
velocity vectors along the planes shown suggest that
there may in fact be two pair of rolls, one in the upper
part of the fault and one in the lower. A print-out of the
flow pattern on other planes shows that this is not the
case, however [33]. The heat flow anomaly further
indicates that the flow pattern is symmetric across the
width of the fault, despite the fact that the initial
perturbations were asymmetric in both cases. The
calculations were run for a real time of 12,000yr. The
pattern in both cases was essentially unchanged for
several thousand years preceding the final output. The
results suggest that at R = 5R_, the flow pattern in
faults with prescribed wall temperatures should take
the form of transverse rolls regardless of the initial
condition. Calculations done at R = 10R, with
symmetric initial perturbations gave essentially the
same result [33].

3.2. Imperfectly conducting walls

For these cases, blocks of impermeable rock with a
finite thermal conductivity and with the same dimen-
sions as the porous zone were placed in a manner as
indicated in Fig. 1. Figures 4-7 show the convection
pattern and heat flow for cases with aspect ratios 4 =
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FiG. 2. Flow pattern and surface heat flow anomaly for fault

zone assuming faces z =0 and z=1 have a prescribed

temperature gradient. R=5R,, A=B=0.1, t=12,000yr.
Initial perturbation: asymmetric, type (I).

B = 0.1, but for different Rayleigh numbers and initial
perturbations.

Figure 4 shows the situation after a computation
time corresponding to 7500 yr, assuming a Rayleigh
number R = 5R, and a type (I) perturbation. It is clear
that the flow is much more irregular than in the cases
with prescribed wall temperatures. There is a pro-
nounced tendency toward the development of a trans-
verse roll at the end of the zone far from the initial
perturbation ; however, the circulation near the end
where the perturbation was initiated shows evidence of
two cells, one of which has a longitudinal character
{see plane y =0, Fig. 4). The asymmetry of the
convection pattern is quite evident in the heat flow
schematic. Moreover, there is a substantial heat flow
anomaly across the upper surface of the impermeable
zone. This indicates that heat is transferred laterally
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FIG. 3. Same model as Fig, 2 except initial perturbation was
asymmetric, type (II).

through the fault boundaries and the excess heat is
conducted through the upper surface. The asymmetry
further suggests that the conductive heat transfer
across the impermeable/permeable boundaries paral-
lel to the strike of the fault is strongly influenced by the
initial perturbation.

Figures 5 and 6 show the situation assuming R
=5R, and R = 10R,, respectively. An initial per-
turbation of type (IIT) was used. Such a perturbation
would be expected to induce transverse rolls; and,
ignoring the small secondary cells and the small
horizontal component of velocity across the width of
the fault, transverse rolls are mainly what is observed.
Aithough the outputs shown are for 12,000 and 7000 yr,
respectively, samples at earlier times show that the
circulation was developed by 3000yr and has been
steady since.
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FiG. 4. Flow pattern and surface heat flow anomaly for a fault

zone assuming faces z = 0 and z = | are in contact with

impermeable material of finite thermal conductivity. R =

5R, A = B = 0., t = 7500yr. Initial perturbation:
asymmetric, type (I).

Figure 7 shows the situation after 13,500 yr assuming
R = 10R_ and an initial perturbation of type (II). Such
a perturbation would tend to induce a longitudinal
roll; however, the plan form indicated by the planes x
=1, z = | in the figure suggests a pair of transverse
roll; however, the plan form indicated by the planes
x=1, z=1 in the figure suggests a pair of transverse
in the plane y =0 are somewhat suggestive of a
longitudinal roll, and the plane z = 0 (not shown, see
Hernandez [33]) consists mainly of an ascending
sheet. The heat flow schematic also indicates the high
degree of asymmetry. A heat flow profile along the
strike of the fault zone would indicate a pattern
corresponding to transverse rolls; whereas a profile
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FIG. 5. As in Fig. 4 except t = 12000 yr and initial
perturbation was symmetric, type (III).

perpendicular to the strike, particularly near the ends
of the fault would show a marked cross-strike heat flow
gradient. Quite evidently, as a consequence of heat
transfer into the impermeable material, the initial
perturbation has executed a significant control on the
subsequent development of the convection pattern.
Figures 8 and 9 show two examples of the con-
vection pattern and surface heat flow for models in
which the aspect ratio was A = B = 0.01. Figure 8 is
for R = 10R_ and an initial perturbation of type (III).
As in the previous cases in which such a perturbation
was used Figs. 5, 6), the fluid convects basically as a
pair of transverse rolls. Figure 9 is for R = 5R_and an
initial perturbation of type (II). In this case, the flow
pattern is more strongly indicative of transverse rolls
than in the corresponding model with the higher
aspect ratio (Fig. 7). The heat flow schematic, however,



Finite amplitude convection

12.00

\ 7
\
\

l
V]
N AT N
° ™~ l].,/
vH\ /\/\ lg,//
8] /n\ ’. l\_///
b/
|

F1G. 6. As in Fig. 5 except R = 10R,, t = 7000yr.

shows an asymmetry perpendicular to the strike of the
fracture which is in some ways similar to that shown in
Fig. 7. Once again, because of the finite thermal
conductivity of the impermeable material adjacent to
the fault, the asymmetric initial condition tends to
affect the subsequent evolution of the flow.

4. DISCUSSION AND CONCLUSIONS

4.1. The cell pattern

The main purpose of this study was to investigate, to
a limited degree, the effects of initial and boundary
conditions on finite amplitude convection in a porous
container with fault-like geometry. Earlier work of
Lowell and Shyu [25] has shown that at the onset of
convection in a fault zone with prescribed wall tem-
peratures the cell pattern should be of the form of a
longitudinal roll; but they suggested that at finite
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FiG. 7. As in Fig. 4 except R = 10R_, ¢t = 13,500 yr, and initial
perturbation was asymmetric, type (II).

amplitude that 3-dim. convection might be more likely.
They also raised the question as to whether in a fault
zone bounded by impermeable walls of finite thermal
conductivity the flow might evolve in time to a flow
which might be typical of an insulated wall boundary
condition. In addition, the work done on finite ampli-
tude convection in cubic containers with insulated
walls has indicated that the flow may be either 2- or 3-
dim. and dependent upon the initial conditions
[19-22].

Our results can be summarized as follows:

(1) In models with prescribed wall temperatures, the
flow was steady, symmetric, and weakly 3-dim. regard-
less of whether the initial perturbation was symmetric
or asymmetric. Thus, the suggestion of [25] that the
finite amplitude flow might be 3-dim., even though
longitudinal rolls occur at R = R, was affirmed. Since
the transverse velocity component was small, however,
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FiG. 8. As in Fig. 6 except t = 6000yr, 4 = B = 0.0L.

the surface heat flow anomaly gave the appearance of
2-dim. transverse rolls. The results did not appear to
depend upon the Rayleigh number in the range
SR, <R <10R..

(2) In models bounded by impermeable slabs of
finite thermal conductivity, the flow pattern was
dependent upon the form of the initial perturbation.
Models in which the initial perturbation was sym-
metric [type (III)] set up steady, symmetric cell
patterns which, though weakly 3-dim., basically took
the form of transverse rolls. Such a pattern developed
for R = 5R_ or 10R, and aspect ratios of 0.1 or 0.01.
Based on the heat flow anomaly calculation, there was
very little heat transfer out of the porous zone. The heat
flow anomaly varied along the strike of the fault,
corresponding to the regions of rising and sinking flow
in the expected manner.

On the other hand, when the initial perturbation
was asymmetric [(I) or (II}], the resulting convective
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FI1G. 9. As in Fig. 7 except R = 5R,, 4 = B = 0.01.

flow tended to retain the asymmetry for a time of at
least several thousand years. Because of the expense
involved in making these calculations, especially for
the models with aspect ratio of 0.01, the calculations
were not run to an equilibrium state, if in fact there was
one. We had expected that the effect of heat transfer
across the walls of the fault would be to render those
walls insulators as the convection pattern evolved. The
resulting pattern would then have been similar to that
arising from a symmetric initial perturbation. There is
some evidence that this was indeed what was develop-
ing. Figures 7 and 9 show considerable similarity to the
transverse rolls in Figs. 6 and 8, particularly in the
plane z = 1. Thelong-strike heat flow anomaly in Figs.
7 and 9 is also consistent with much of the flow within
the fault zone being characterized by transverse rolls,

Based on these limited results, it appears that finite
amplitude convection in a fault zone, whether with
prescribed wall temperatures or with finite heat trans-
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fer, tends to be a weakly 3-dim. flow in which the
dominant mode is transverse rolls. These results hold
for Rayleigh numbers up to 10 times critical.

More work is needed to determine whether steady
transverse rolls really do develop at long times in
systems with finite heat transfer across the walls of the
fault, whether the patterns that have evolved are stable,
whether there may be other steady states etc. In-
tuitively, it would seem that the cubic plan form,
insulated boundary models which have been studied to
date may admit a broader range of solutions than
would be possible in the models with fault-like geo-
metry and with finite or infinite heat transfer boundary
conditions which we have studied.

It is interesting to note that for times of the order of
10*yr, the effect of asymmetric initial perturbations
may still be observed by the fact that the heat flow
anomaly exists well outside the porous zone and that
the anomaly is asymmetric across the strike of the
fault. This result may be of considerable geophysical
importance.

4.2. Application to known geothermal systems

Available data on fault-controlled geothermal sys-
tems is very sketchy and such systems tend to be
geologically complex; so it is difficult to compare the
results of our simple model with field data in a
quantitative fashion. Two continental thermal areas
which appear to be fault controlled are the East Mesa
Anomaly in the Imperial Valley, California and the
Izmir-Seferihisar Area in Western Turkey. Figures 10
and 11 show that for each of these areas an alternating
pattern of thermal highs and lows follows the linear
trend of the fault zones. The spatial scales are of the
order of a few kilometers for each area. The thermal
pattern may be due to ascending and descending fluid
associated with transverse convective rolls within the
fault zone — perhaps as are indicated by Figs. 5,6,0r 8
of the model results. The absence of any apparent
asymmetry across the strike of the fault zones is
certainly not conclusive evidence as to the nature of the
initial perturbation, since geological as well as physical
processes may determine the form of the flow pattern
in natural systems. For example, it may well be
reasoned that the permeability in fault zones may be
anisotropic and that the transverse horizontal per-
meability is lower than the other components [23].
Such an anisotropy would tend to force transverse rolls
rather than longitudinal rolls.

Green [14] has examined a rather detailed suite of
heat flow data from the Galapagos Spreading Center.
His results suggest a widespread porous medium type
hydrothermal circulation with substantial local con-
trol of the circulation by escarpments. In fact, a
traverse across a section of an escarpment shows a
substantial transverse heat flow anomaly gradient with
high heat flow on the upthrown side. Green suggests
that the circulation is not completely forced by the
topography (the chimney effect). Is it possible that
convection with the fault zone itself, perhaps partly

RoBERT P. LOWELL and HEROEL HERNANDEZ

evolving from an asymmetric, fault motion induced
initial perturbation, is partially responsible? Clearly,
theoretical models of fault zone convection need to be
improved and additional detailed measurements on
fault-controlled geothermal systems are necessary.
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CONVECTION D’AMPLITUDE FINIE DANS UN VOLUME POREUX AVEC UNE
GEOMETRIE DE FAILLE: EFFET DES CONDITIONS INTIALES ET AUX LIMITES

Resumé—On utilise les techniques de différences finies pour étudier la convection d’amplitude finie dans un
volume poreux avec une géométrie de faille. Le but principal est la détermination du réle des conditions
limites aux parois et de la perturbation initiale sur la configuration d'écoulement. Dans des volumes avec des
températures données a la paroi, 'écoulement est faiblement tridimensionnel, avec Papparence générale de
rouleaux transverses bidimensionnels, Dans des volumes limités par des blocs impermeéables a conductivité
thermique finie, il s'établit une configuration d’écoulement proche de celle relative aux volumes avec
températures de paroi fixées; mais des perturbations initiales dissymétriques tendent a faire apparaitre des
écoulements dans lesquels des dissymétries sont encore présentes aprés 10* ans. Les résultats sont comparés
avec des données relatives 3 des systémes géothermiques existants dans la natuore.

KONVEKTION MIT ENDLICHER AMPLITUDE IN EINEM POROSEN BEHALTER MIT
VERWERFUNGSARTIGER GEOMETRIE: EINFLUSS DER ANFANGS- UND
RANDBEDINGUNGEN

Zusammenfassung— Differenzenverfahren wurden angewandt, um die Konvektion mit endlicher Amplitude
in einem pordsen Behilter mit verwerfungsartiger Geometrie zu untersuchen. Das Hauptziel bestand darin,
die Rolle der Randbedingungen an der Wand und die der anfinglichen Ungleichformigkeit auf die spatere
Strémungsverteilung zu ermitteln. In Behiltern mit vorgegebenen Wandtemperaturen war die Strémung
schwach dreidimensional, es traten aber stindig zweidimensionale Querwalzen auf. In Behdltern, die von
undurchlissigen Blicken endlicher Wirmeleitfahigkeit begrenzt waren, zeigte die Stromungsverteilung die
Tendenz zu einem dhnlichen Verhalten wie bei den Behéltern mit vorgegebenen Wandtemperaturen, jedoch
fithrten asymmetrische anfingliche Ungleichfdrmigkeiten zu langsam sich entwickelnden Strémungen, in
denen Asymmetrien noch nach 10% Jahren vorhanden waren. Die Ergebnisse wurden mit den Daten
natiirlich auftretender geothermischer Systeme verglichen.

KOHBEKLMA KOHEYHOM AMIUIUTYBI B MOPUCTOM OMPAHMYEHHOM
OBBEME HECOBEPHIEHHOW TEOMETPHUHU. BAMSIHHE HAYAJBHBIX
¥ TPAHWYHBIX VCIOBUNA

Annoramun — KOHBeKUHA KOHEHHON aMILIUTYIB! B NOPHCTOM OFPaHHMEHHOM O0beMe HECOBEPIEHHON
reOMETPHM HCCNEAOBANACE METOMOM KOHEYHbIX pasHocTedl. OCHOBHas Lg/b HCCIEAOBAHHS COCTONIA
B ONpeJencHHH BIIMAHUA TPAHMYHBIX YCHOBMH HAa CTEHKE M HAYAJbHOrO BO3MYIUEHHS HA KapPTHHY
TeveHus. TIpH 3a0aHHBIX 3HAMCHHAX TEMNEPATYPH! CTEHOK HabAlodaeTcs HOMTH TPEXMepPHBIH HOTOK C
ABYMEDPHLIMH [TONEPSUHBIMY BANAMM, BO3HUKAIOBIMMHE 110 Beemy 00beMy. B o0neMax, orpaHuueHHBIX
HENPOHWUACMBIMH CTEHKaM¥ KOHEYHOH TEIUIONPOBOINHOCTH, nabAOAAETCH aHANOTHYHAN XapTHHA
TeHMEHNA, HO ACHMMETDUYHLIC HAYaNbHbIE BOIMYIUCHN BLI3LIBAIOT MEANCHHO PASBHBAICIESCT TEYEHHE,
AcCHMMETPHS KOTOpOTC eue Habmonaerca vepes 10* ner. TIpoBencHO CPaBHEHHE TIONYISHHBIX DEIY/ib-
TATOB C JAHHBIMH [UIS HPHPOOHBIX [€OTEPMAABHBIX CHCTEM.



